The conditions of the existence and the asymptotic behaviour of the stationary agedistribution of non-linear continuous population model with selection process have been described
[1] Von Foerster H. Some remarks on changing populations // Kinetics of Cellular Proliferation. - New-York: Grune and Stratton, 1959. - P. 382 - 407.
[2] Matsenko V.G. On one class of equations of mathematical physics arising in the dynamics of biological macrosystems // Zhurn. vychisl. mat. i mat. phys. - 1981. - 21, N 1. - P. 69 - 79.
[3] Gurtin M.E., MacCamy R.C. Nonlinear age-dependent population dynamics // Arch. Ration. Mech. and Anal. - 1974. - 54, N 3. - P. 281 - 300.
[4] Farkas M. On the stability of stationary age-distributions // Appl. Math. Comput. - 2002. - 131, N 10. - P. 107 - 123.
[5] Matsenko V.G. Nonlinear model of the dynamics of the age structure of populations // Nonlinear oscillations, 2003. - 6, N 3. - P. 357 - 367.
[6] Sirazetdinov T.K. Stability of systems with distributed parameters. - Kazan: Publishing house of Kazan. aviation institute, 1971. - 216 p.
- ACS Style
- Matsenko, V.G. Selection models in populations with age structure. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Matsenko VG. Selection models in populations with age structure. Bukovinian Mathematical Journal. 2018; 1(228).
- Chicago/Turabian Style
- Vasyl Grigorovich Matsenko. 2018. "Selection models in populations with age structure". Bukovinian Mathematical Journal. 1 no. 228.