Перейти до основного вмісту
The first functional Lebesgue class and the Baire classification of distinctly continuous mappings
Karlova Olena 1,2
1 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
2 Jan Kokhanowski University, Kielce, 25-001, Poland
Keywords: Lebesgue class, the Baire classification, distinctly continuous mappings
Abstract

It is obtained that every separately continuous mapping $f: X × T → Y$ belongs to the first Baire class if $X$ is a metrizable (or even $PP$-) space, $T$ is a topological space and $Y$ is a separable metrizable space which is weakly locally homeomorphic to a separable metrizable topological vector space.

References

[1] Lebesque H. Sur l'approximation des fonctions //Bull. Sci. Math. - 1898. - 22 . - P.278-287.

[2] Rudin W. Lebesgue first theorem // Math. Analysis and Applications, Part B. Edited by Nachbin. Adv. in Math. Supplem. Studies 78. - Academic Press, 1981. - P.741-747.

[3] Maslyuchenko V.K., Mykhailyuk O.V., Sobchuk O.V. Research on distinctly continuous mappings // Proceedings of the International Mathematical Conference in Memory of Hans Hahn. - Chernivtsi: Ruta, 1985. - P. 192-246.

[4] Kalancha A.K., Maslyuchenko V.K. Berivska. Classification of vector-valued distinctly continuous functions on products with a finite-dimensional factor / / 3b. nauk. pr. Kam'yanets-Pod. ped. un-tu. Ser. Phys.-Math. (mathematics). - 1998. - 4. - P.43-46.

[5] Kalancha A.K., Maslyuchenko V.K. Lebesgue-Czech dimension and Berivska classification of vector-valued distinctly continuous mappings // Ukr. mate. Journal - 2003. - 55, N 11. - P.1596-1599.

[6] Banakh T.O. (Metrically) quarter-stratifiable spaces and their applications in the theory of separately continuous functions // Mat. studii. - 2002. - 18 , N 1. - C.10-28.

[7] Cauty A.R. Un Théorème de point fixe pour les fonctions multivoques // Book of Abstracts Int. Conf. Func. Anal. Appl., May 28-31, Lviv, 2002. - 2002. - P.49.

[8] Karlova O. On Baire classification of separately continuous functions // Book of Abstracts Int. Conf. Func. Anal. Appl., May 28-31, Lviv, 2002. - 2002. - P.101-102.

[9] Karlova O.O. On some generalizations of the theorems of Beer and Lebesgue // Materials of the student scientific conference of the Chernivtsi National University (May 14-15, 2002) Book 2. Natural and physical and mathematical sciences. - Chernivtsi, 2002. - P.424-425.

[10] Spanier E. Algebraic topology. - M.: Mir, 1971. - 671 p.

[11] Kuratovsky K. Topology. V.1. - M.: Mir, 1966. - 594 p.

[12] Maslyuchenko V.K. Differently continuous mappings and Käthe spaces: Dissertation...doctor of physics and mathematics: 01.01.01. - Chernivtsi, 1999. - 446 p.

[13] Sobchuk O. $PP$-spaces and Baire classification // Book of Abstracts Int. Conf. Func. Anal. Appl., May 28-31, Lviv, 2002. - 2002. - P.189.

[14] Schaefer H. Topological vector spaces. - M.: Mir, 1971. - 360 p.

[15] Engelking R. General topology. - M.: Mir, 1986. - 752 p.

Cite
ACS Style
Karlova, O. The first functional Lebesgue class and the Baire classification of distinctly continuous mappings. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Karlova O. The first functional Lebesgue class and the Baire classification of distinctly continuous mappings. Bukovinian Mathematical Journal. 2018; 1(191).
Chicago/Turabian Style
Olena Karlova. 2018. "The first functional Lebesgue class and the Baire classification of distinctly continuous mappings". Bukovinian Mathematical Journal. 1 no. 191.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings