Перейти до основного вмісту
Stability of a stochastic oscillator under diffuse phase influx on parametric resonance
Rogol S. L. 1
1 Joint-Stock Company "Rinuzhi", Riga, LV-1000, Latvia
Keywords: stability of a stochastic oscillator, parametric resonance
Abstract

The necessary and sufficient conditions of asymptotic stochastic stability of stochastic oscillator are obtained in this article. The features of influence of the diffusion phase flow on parametric resonance are considered.

References

[1] Arnold L., Papanicolaou Gr., Wihstutz V. Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications // SIAM J. Appl. Math. - 1986. - 46 . - PP.427-450.

[2] Yosida K. Functional analysis. - M.: Mir, 1967. - 624 p.

[3] Kats I.Ya., Krasovskyi N.N. On the stability of systems with random parameters // Appl. we have and fur - 1960. - 24, issue 5. - P. 809-823.

[4] Rozanov Yu.A. Random processes.- M.: Nauka, 1979. - 184 p.

[5] Khrisanov S.M., Pogrebetskaya T.A. Moment equations and Lyapunov trajectory indices. - Manuscript. den. VINITI, N 8439 - 1387, 1987. - 26 p.

[6] Kulinich G.L. Qualitative analysis of the influence on a harmonic oscillator with friction of random disturbances of the "white noise" type along the phase velocity vector / /Ukr. Math. Journal. - 1997. - 49, N 1. - P.35-46.

[7] Tsarkov E.F. On the stability of solutions of linear differential equations with Markov coefficients // Reports of the Academy of Sciences of the Ukrainian SSR. Series. A. - 1987. - N 2. - P. 10-15.

[8] Korolyuk V.S. Averaging and stability of dynamical systems with Markov switchings // Sweden Univ. of Umea. - S-90187. - 1991. - Febr. - 15 p.

[9] Skorokhod A.V. Asymptotic methods of the theory of stochastic differential equations. - K.: Nauk. Dumka, 1987. - 328 p.

[10] Krein M.G., Rutman M.A. Linear operators leaving a cone invariant in a Banach space // Uspekhi mat. nauk. - 1947. - 3, issue 1. - P. 3-95.

[11] Kulinich G.L. Qualitative analysis of the influence of random perturbations on the phase velocity of the harmonic oscillator // Random Operators and Stochastic Equations. - 1995. - 3 , N 2. - P.141-152.

[12] Kulinich G.L. On the limiting behaviour of a harmonic oscillator with random external disturbance // J. Applied Math. and Stoch. Anal. - 1995. - 8 , N 3. - P.265-274.

[13] Stratanovich R.L. Selected issues of fluctuation theory in radio engineering. - M.: Sov. radio, 1961.- 558 p.

[14] Rogol S.L. Stability of linear differential equations under small diffusion perturbations. Dissertation ... candidate of physical and mathematical sciences. - Chernivtsi, 1993. - 121 p.

Cite
ACS Style
Rogol , S.L. Stability of a stochastic oscillator under diffuse phase influx on parametric resonance. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Rogol SL. Stability of a stochastic oscillator under diffuse phase influx on parametric resonance. Bukovinian Mathematical Journal. 2018; 1(191).
Chicago/Turabian Style
S. L. Rogol . 2018. "Stability of a stochastic oscillator under diffuse phase influx on parametric resonance". Bukovinian Mathematical Journal. 1 no. 191.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings