Is shown that if the values of nonhomogeneous part of autonomous parabolic linear equation belong to complex interpolation scale associated with the operator of this equation that there is unique classical solution of Cauchy problem. This fact is updating on the case of complex interpolation scales of known result of Da Prato and Grisvard $[1-3]$, proved for continuous interpolation scale.
[1] Grisvard P. Équations operationnelles abstraites et problémes aux limites dans des domaines non réguliers // Actes. Congrés Intern. Math. - 1971. - V. 2. - P.731-736.
[2] Da Prato G., Grisvard P. Sommes d'opŕateurs non linéares et équations differentielles opérationelles // J. Math. Pures Appl. - 1979. - V. 54. - P.305-387.
[3] Da Prato G., Grisvard P. Equations d'évolotion abstraites non linéaire de type parabolique // Ann. Mat. Pure Appl. - 1979. -- 120 , N 4. - P.329-396.
[4] Clement F., Heymans H., Angenent S., van Duijn K., de Pachter B. One-parameter semigroups. - M.: Mir, 1992. - 345 p.
[5] Triebel H. Interpolation theory, functional spaces, differential equations. - M.: Mir, 1980.-234 p.
[6] Henry D. Geometric theory of nonlinear parabolic equations. - M.: Mir, 1985. - 332 p.
[7] Lopushansky A.O. Strongly continuous semigroups of perturbations of abstract parabolic equations // Math. methods and physic-mechanical fields.— 1999.- 42, N 3. - P.75-82.
- ACS Style
- Lopushansky, A.O. Solvability of the inhomogeneous Cauchy problem for abstract parabolic equations in complex interpolation scales. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Lopushansky AO. Solvability of the inhomogeneous Cauchy problem for abstract parabolic equations in complex interpolation scales. Bukovinian Mathematical Journal. 2018; 1(191).
- Chicago/Turabian Style
- Andriy Olegovich Lopushansky. 2018. "Solvability of the inhomogeneous Cauchy problem for abstract parabolic equations in complex interpolation scales". Bukovinian Mathematical Journal. 1 no. 191.