For an subharmonic function in $R^m$ with radial distribution of Riesz mass sequence the finity of Polya order from finity of lower order is proved.
[1] Miles J. On the growth of meromorphic functions with radially distributed zeros and poles // Pacif. J. Math.- 1986.- 122 , N 1.- P.147-167.
[2] Ronkin L.I. Introduction to the theory of entire functions of many variables. - M.: Nauka, 1971. - 432 p.
[3] Schwartz L. Analysis. T.1. - M.: Mir, 1972. - 824 p.
[4] Heyman W., Kennedy P. Subharmonic functions. - M.: Mir, 1980. - 304 p.
[5] Drasin D., Shea D.F. Polya peaks and the osscillation of positive functions // Proc. Amer. Math. Soc. - 1972. - 34. - P.403-411.
[6] Stein I., Weiss G. Introduction to harmonic analysis on Euclidean spaces. - M.: Mir, 1974. - 336 p.
[7] Kolokolnikov A.S. On the growth of subharmonic functions in space with a special mass distribution // Theory of functions, functional analysis and their applications. - 1974. - Issue 21. - P. 42-56.
[8] Azarin V.S. Theory of growth of subharmonic functions. Lecture texts. Part 2. - Kharkov: KSU, 1982. - 74 p.
[9] Kondratyuk A.A. Spherical harmonics and subharmonic functions / / Mat. sb. - 1984. - 125 (167), N 2. P. 147-166.
- ACS Style
- Veselovska , O.V. On the growth of subharmonic functions in the space $R^m$ with radial mass distribution. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Veselovska OV. On the growth of subharmonic functions in the space $R^m$ with radial mass distribution. Bukovinian Mathematical Journal. 2018; 1(191).
- Chicago/Turabian Style
- Olga Volodymyrivna Veselovska . 2018. "On the growth of subharmonic functions in the space $R^m$ with radial mass distribution". Bukovinian Mathematical Journal. 1 no. 191.