Перейти до основного вмісту
Generalization of the polarization formula for inhomogeneous polynomials and analytic mappings
Cherneha Iryna Volodymyrivna 1
1 Department of Analysis, Geometry and Topology, Institute of Applied Problems of Mechanics and Mathematics named after Ya. S. Pidstryhach, NAS of Ukraine, Lviv, 79060, Ukraine
Keywords: inhomogeneous polynomials, analytic mappings, Banach spaces
Abstract

It is proposed a generalization of polarization formula for nonhomogeneous polynomials and analytic functions on Banach spaces.

References

[1] Bohnenblust H.F., Hille E. On the absolute convergence of Dirichlet series // Ann. of Math. (2). - 1931. - 32. - P.610.

[2] Martin R.S. Contributions to the theory of functionals // Thesis, University of California. - 1932 (unpublished).

[3] Mazur S., Orlicz W. Grundlegende Eigenschaften der polynomischen Operationen I // Studia Math. - 1934. - 5. - P.50-68.

[4] Aron R.M., Globevnik J. Analytic functions on $c_0$ // Revista Matematica (Madrid). - 1989. - 2. - P.27-34.

[5] Aron R.M., Lacruz M., Ryan R.A, Tonge A.M. The generalized Rademacher Functions // Note Math. - 1992. - 12. - P.15-25.

[6] Dineen S. Complex Analysis on Infinite Dimensional Spaces. - Springer-Verlag, 1999. - 542 p.

Cite
ACS Style
Cherneha, I.V. Generalization of the polarization formula for inhomogeneous polynomials and analytic mappings. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Cherneha IV. Generalization of the polarization formula for inhomogeneous polynomials and analytic mappings. Bukovinian Mathematical Journal. 2018; 1(191).
Chicago/Turabian Style
Iryna Volodymyrivna Cherneha. 2018. "Generalization of the polarization formula for inhomogeneous polynomials and analytic mappings". Bukovinian Mathematical Journal. 1 no. 191.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings