Перейти до основного вмісту
Equicompact spaces
Maslyuchenko Oleksandr Volodymyrovych 1,2
1 Institute of Mathematics, University of Silesia in Katowice, Katowice, 40-007, Poland
2 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: equicompact spaces
Abstract

We call a spaces $X$ equicompact if a closure of any relatively pseudocompact subset of $X$ is compact. Denote by $SC_p(X,Y)$  a space of all separately continuous mappings $f: X =  \prod_{i=1}^d X_i → Y$ with the poinwise convergent topology. Let $X$ be the product of countable Cech complete spaces $X_1, ..., X_d$ and $Y$ be a metrizable space. We prove that $SC_p(X,Y)$ is equicompact. We also prove that for each $T_1$-space $X$ there exists an equicompact $T_1$- space $μX ⊇ X$ such that ${\overline X} = μX$ and any continuous mapping from $X$ to an completely regular equicompact space $Y$ admits a continuous extention on $μX$.

References

[1] Engelking R. General topology. - M.: Mir, 1986. - 752 p.

[2] Arkhangelsky A.V. Topological spaces of functions. - M.: Izd-vo Moskovsk. there, 1989. -222 p.

Cite
ACS Style
Maslyuchenko, O.V. Equicompact spaces. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Maslyuchenko OV. Equicompact spaces. Bukovinian Mathematical Journal. 2018; 1(191).
Chicago/Turabian Style
Oleksandr Volodymyrovych Maslyuchenko. 2018. "Equicompact spaces". Bukovinian Mathematical Journal. 1 no. 191.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings