We call a spaces $X$ equicompact if a closure of any relatively pseudocompact subset of $X$ is compact. Denote by $SC_p(X,Y)$ a space of all separately continuous mappings $f: X = \prod_{i=1}^d X_i → Y$ with the poinwise convergent topology. Let $X$ be the product of countable Cech complete spaces $X_1, ..., X_d$ and $Y$ be a metrizable space. We prove that $SC_p(X,Y)$ is equicompact. We also prove that for each $T_1$-space $X$ there exists an equicompact $T_1$- space $μX ⊇ X$ such that ${\overline X} = μX$ and any continuous mapping from $X$ to an completely regular equicompact space $Y$ admits a continuous extention on $μX$.
[1] Engelking R. General topology. - M.: Mir, 1986. - 752 p.
[2] Arkhangelsky A.V. Topological spaces of functions. - M.: Izd-vo Moskovsk. there, 1989. -222 p.
- ACS Style
- Maslyuchenko, O.V. Equicompact spaces. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Maslyuchenko OV. Equicompact spaces. Bukovinian Mathematical Journal. 2018; 1(191).
- Chicago/Turabian Style
- Oleksandr Volodymyrovych Maslyuchenko. 2018. "Equicompact spaces". Bukovinian Mathematical Journal. 1 no. 191.