For two-dimensional continued fractions with partial quotients equal $ {(1-g_{i-1, j})g_{ij}z_{ig}}\over {1}$ , ${(1-g_{i, j-1})g_{ij}z_{ig}}\over {1}$ , ${g_{ii} g_{i-1, i-1}z_{ii}}\over {1}$ convergence criteria have been established using the method of majorants.
[1] Wall H.S. Analytic theory of continued fractions.- New York: Van Nostrand, 1948.- 433 p.
[2] Sleshinsky I.V. On the question of convergence of continued fractions // Mat. collection. - 1888. XIV. - P.337-343.
[3] Jones W., Throne W. Continued fractions. Analytical theory and applications. M.: Mir, 1985.- 414 p.
[4] Lorentzen L., Waadeland H. Continued fractions with applications.- Amsterdam: North-Holland, 1992.- 606 p.
[5] Bodnar D.I. Branching continued fractions.—K.: Nauk. Dumka, 1986. — 176 p.
[6] Bodnar D.I. Convergence criteria for branching continued fractions with partial links of the form ${(1 - g_{i_1, i_2, ... , i_k}) ĝ_{i_1, i_2, ... , i_k} x_{i_1, i_2, ... , i_k}} \over 1$ // Mathematical methods and physical-mechanical fields. - 1982. - Issue 15. - P.30-35.
[7] Bodnar D.I., Kuchminskaya H.I. Absolute convergence of the even and odd parts of a two-dimensional corresponding continued fraction // Mat. methods and physical-mechanical fields. - 1983. - Issue 18. - P.30-34.
[8] Kuchminskaja Ch. On the convergence of two-dimensional continued fractions // Constructive theory of functions.- Sofia: Publishing House of the Bulgarian Acad. Sci. 1984.- P.501-506.
[9] Dmytryshyn R.I. Multidimensional analogues of $g$-fractions, their properties, signs of convergence: Dissertation ... candidate of physical and mathematical sciences - Lviv, 1998. - 128 p.
[10] Kuchmins'ka Kh. On sufficient conditions for convergence of two-dimensional continued fractions // Acta Applicandae Mathematicae.- 2000.- 61 , N 1.- P.175-183.
- ACS Style
- Vozna, S.; Kuchminska , K.Y. Convergence criteria for a two-dimensional continued fraction of special form. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Vozna S, Kuchminska KY. Convergence criteria for a two-dimensional continued fraction of special form. Bukovinian Mathematical Journal. 2018; 1(191).
- Chicago/Turabian Style
- Svitlana Vozna, Khrystyna Yosypivna Kuchminska . 2018. "Convergence criteria for a two-dimensional continued fraction of special form". Bukovinian Mathematical Journal. 1 no. 191.