It is shown that lower semi-continuous compact-valued mapping of atopological space $X$ into a super-$σ$-metrizable space $Y$ is upper semi-continuous in every point of a residual set in $X$ and every lower semi-continuous finite-valued mapping of locally connected space $X$ into Sorgenfrei line is locally constant in every point of an open residual set in $X$. Besides, there are examples of upper (lower) separetely continuous compact-valued mappings of the squere $[0, 1]^2$ into the segment $[0, 1]$ which are not upper (lower) semi-continuous in any point.
[1] Kenderov P.S. Multivalued mappings and their properties similar to continuity // Uspekhi mat. sciences. - 1980. - 35, N 3. - P. 194-196.
[2] Debs G. Points de continuité d'une function séparément continue // Proc. Amer. Math. Soc. - 1986. - 97 , N 1. - P.167-176.
[3] Maslyuchenko V.K. Linear continuous operators. - Chernivtsi: Ruta, 2002. - 72 p.
[4] Engelking R. General topology. - M.: Mir, 1986. - 752 p.
[5] Maslyuchenko V.K. The first types of topological vector spaces. - Chernivtsi: Ruta, 2002. - 72 p.
[6] Kuratovsky K. Topology. V.1. - M.: Mir, 1966. - 594 p.
- ACS Style
- Kozhukar , O.G.; Maslyuchenko, V.K. Around Debs' theorems on multivalued mappings. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Kozhukar OG, Maslyuchenko VK. Around Debs' theorems on multivalued mappings. Bukovinian Mathematical Journal. 2018; 1(191).
- Chicago/Turabian Style
- Olena Georgiivna Kozhukar , Volodymyr Kyrylovych Maslyuchenko. 2018. "Around Debs' theorems on multivalued mappings". Bukovinian Mathematical Journal. 1 no. 191.