Перейти до основного вмісту
A problem with integral conditions for pseudodifferential equations
Medvid Oksana Myroslavivna 1 , Symotiuk Mykhailo Mykhailovych 2
1 Department of Mathematical Physics, Institute of Applied Problems of Mechanics and Mathematics named after Ya.S. Pidstryhach, NAS of Ukraine, Lviv, 79060, Ukraine
2 Department of Mathematical Physics, Institute of applied problems of mechanics and mathematics named after Ya.S. Hairdresser of the National Academy of Sciences, Lviv, 79060, Ukraine
Keywords: integral conditions, pseudodifferential equations
Abstract

The correctness of the problem with integral conditions for pseudodifferential equations is investigated. Тhe conditions of existence and uniqueness of the solution of the problem are established. The metric theorems of an estimations of small denominators of the problem are proved.

References

[1] Vileni I.L. Uniqueness classes of solutions of a general boundary value problem in a layer for systems of linear partial differential equations // Reports of the Academy of Sciences of the Ukrainian SSR. Series A. - ​​1974. - N 3. - P.195-197.

[2] Gorbachuk V.I., Gorbachuk M.L. Boundary value problems for differential-operator equations. - K.: Nauk. Dumka, 1984. - 284 p.

[3] Kartashev A.P., Rozhdestvensky B.L. Ordinary differential equations and foundations of the calculus of variations. - M.: Nauka, 1980. - 288 p.

[4] Medvid O.M., Symotyuk M.M. Problem with integral conditions for pseudodifferential equations / / International. scientific. conf. "Sixth Bogolyubov readings" (August 26-30, 2003). Theses of the supplement - Kyiv: Institute of Mathematics of the National Academy of Sciences of Ukraine, 2003. - P.150.

[5] Ptashnyk B.Yu., Ilkiv V.S., Kmit I.Ya., Polishchuk V.M. Nonlocal boundary value problems for equations with partial derivatives. - Kyiv: Nauk. Dumka, 2002. - 416 p.

[6] Symotyuk M.M. Problem with two-point conditions for equations with pseudodifferential operators // Mat. Methods and Phys. - Mech. Fields. - 2000.- 43, N 1.- P.29-35.

[7] Symotyuk M.M. On estimates of measures of sets on which the modulus of a smooth function is bounded from above // ​​Mat. Methods and Phys.-Mechanical Fields. - 1999. - 42, No. 4. - P.90-95.

[8] Fardigola L.V. Correctness criterion in the layer of a boundary value problem with integral conditions / / Ukr. mat. zhurn. - 1990.- 42, N 11.- P. 1546-1551.

[9] Fardigola L.V. Properties of $T$-stability of an integral boundary value problem in a layer / / Theory of functions, functional analysis and their applications. - 1991. - N 55. - P. 78-80.

[10] Fardigola L.V. Influence of parameters on the properties of solutions of integral boundary value problems in a layer / / News of universities. Mathematics. - 1993. - N 7. - P. 51-58.

[11] Shtabalyuk L.I. Almost periodic solutions of differential equations of hyperbolic and composite types // Diss. ... Cand. of Phys. and Mathematics. - Lviv, 1984. - 146 p.

Cite
ACS Style
Medvid , O.M.; Symotiuk, M.M. A problem with integral conditions for pseudodifferential equations. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Medvid OM, Symotiuk MM. A problem with integral conditions for pseudodifferential equations. Bukovinian Mathematical Journal. 2018; 1(191).
Chicago/Turabian Style
Oksana Myroslavivna Medvid , Mykhailo Mykhailovych Symotiuk. 2018. "A problem with integral conditions for pseudodifferential equations". Bukovinian Mathematical Journal. 1 no. 191.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings