Перейти до основного вмісту
Reproducibility of sequences in Banach spaces
Popov Mykhailo Mykhailovych 1,2
1 Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76000, Ukraine
2 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: Banach spaces
Abstract

We present a new method to prove a number of the well-known theorems on properties of some classical Banach spaces. It is based on an elementary lemma (Lemma 1) which makes the most of the known proofs more short. Besides, we prove generalizations of the J.Lindenstrauss, A.M.Olevskii and A.Peƚczyński theorem on precise reproducibility of the Haar system and the J.Bourgain and H.Rosenthal theorem on the non-existence of sign-embeddings of the space $L_1$ into $c_0$. 

References

[1] Bourgain J, Rosenthal H.P. Applications of the theory of semi-embeddings to Banach space theory // J. Funct. Anal., 1983. - V.52. - P.149-188.

[2] Ghoussoub N., Rosenthal H.P. Martingales, $G_δ$-embeddings and quotients of $L_1$ // Math. Ann., 1983. - V.264, N3. - P.321-332.

[3] Kadets V.M, Popov M.M. On the Liapunov convexity theorem with applications to sign-embeddings // Ukrainian Math. Journal.  1992. - T.44, N9. - C.1192-1200.

[4] Lindenstrauss J, Peƚczyński. Contributions to the  theory of classical Banach Spaces // J. Funct. Anal., 1971. - V.8. - P.225-249.

[5] Lindenstrauss J, Tzafriri L. Classical Banach Spaces. I. - 1977. - Springer. - Berlin etc. 190p.

[6] Lindenstrauss J, Tzafriri L. Classical Banach Spaces. II. - 1979. - Springer. - Berlin etc. 243p.

[7] Olevskii A.M. Fourier series and Lebesgue functions // Uspekhi mat. nauk, 1967. - V. 22. - P. 236-239.

[8] Rodin V.A, Semyonov E.M. Rademacher series in symnetric spaces // Anal. Math., 1975. - V.1, N3. - P.207-222.

[9] Rosenthal H.P. Sign-embeddings of $L^1$. - Lect. Notes in Math. - Springer. - 1983. - N995. - P.155-165.

[10] Talagrand M. The three-space problem for $L_1$ // J. Amer. Math. Soc, 1990. - V.3, N1. - P.9-29.

[11] Zippin M. On perfectly homogeneous bases in Banach spaces // Isr. J. Math, 1966. - V.4. - P.265-272.

Cite
ACS Style
Popov, M.M. Reproducibility of sequences in Banach spaces. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Popov MM. Reproducibility of sequences in Banach spaces. Bukovinian Mathematical Journal. 2018; 1(160).
Chicago/Turabian Style
Mykhailo Mykhailovych Popov. 2018. "Reproducibility of sequences in Banach spaces". Bukovinian Mathematical Journal. 1 no. 160.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings