The minimal (of quantity of elements) systems of generators are constructed for the normal subgroups of monomial group.
[1] Crouch R. Monomial groups // Trans. Amer. Math. Soc. - 1955. - Vol. 80. - P. 187-215.
[2] Ore O. Theory of monomial groups // Trans. Amer. Math. Soc. - 1942. - Vol. 51. - P. 15-64.
[3] Baake M. Structure and representations of the hyperoctahedral group // J. Math. Phys. - 1984. - Vol.25, N11. - P.3171-3182.
[4] Sikora V.S. Distributions of elements of monomial groups over finite fields by minimal bases / Bulletin of Kyiv University. Series: Physical and mathematical sciences. - 1999. - N 3. - P. 71-79.
[5] Zavodya M.V., Sikora V.S. Systems of generating normal subgroups of the hyperoctahedral group // Bulletin of Kyiv University. Series: Physical and mathematical sciences. - 2002. - N 3. - P. 71-79.
[6] Picard S. On the bases of the symmetric group // Cybernetic collection, M.: Mir, 1965. - Issue 1. - P. 7-34.
[7] Isaacs I.M., Thilo Zieschang. Generating symmetric groups // Math. Notes. - 1995. - Vol.10. - P.734-739.
- ACS Style
- Volovidnyk , O.P.; Sikora, V.S. Minimal systems of generating normal subgroups of a monomial group over a finite field. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Volovidnyk OP, Sikora VS. Minimal systems of generating normal subgroups of a monomial group over a finite field. Bukovinian Mathematical Journal. 2018; 1(160).
- Chicago/Turabian Style
- O. P. Volovidnyk , Vira Stepanivna Sikora. 2018. "Minimal systems of generating normal subgroups of a monomial group over a finite field". Bukovinian Mathematical Journal. 1 no. 160.