The Kuratowski-Мontgomery theorem and the Maslyuchenko theorem on Lebesgue classification of mappings of two variables are generalized to the case of multivalued mappings.
[1] Kuratowski C. Sur la théorie des fonctions dans les espaces métriques // Fund. Math. - 1931. - 17. - P.275-282.
[2] Kuratovsky K. Topology. V.1. - M.: Mir, 1966. - 594 p.
[3] Montgomery D. Non-separable metric spaces // Fund. Math. - 1935. - P.527-533.
[4] Kuratowski C. Quelques problémes concernant les espaces métriques non-séparables // Fund. Math. - 1935. - P.534-545.
[5] Maslyuchenko V.K. Differently continuous mappings and Käthe spaces. Dissertation ... Doctor of Physical and Mathematical Sciences. - Chernivtsi, 1999. - 345 p.
[6] Maslyuchenko V.K., Maslyuchenko O.V., Mykhaylyuk V.V., Sobchuk O.V. Paracompactness and separately continuous mappings // General Topology in Banach Spaces. - Nova Sci. Publ. - Nantintong-New York, 2001. - P.147-169.
[7] Engelkin R. General topology. - M.: Mir, 1986. - 752 p.
[8] Kwiecińska G. On Lebesgue theorem for multivalued functions of two variables // Proceedings of the Ninth Prague Topological Symposium, 2001. - P.181-189.
- ACS Style
- Karlova, O.; Sobchuk, O.V. Lebesgue classification of multivalued mappings of two variables. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Karlova O, Sobchuk OV. Lebesgue classification of multivalued mappings of two variables. Bukovinian Mathematical Journal. 2018; 1(160).
- Chicago/Turabian Style
- Olena Karlova, Oleksandr Vasyliovych Sobchuk. 2018. "Lebesgue classification of multivalued mappings of two variables". Bukovinian Mathematical Journal. 1 no. 160.