The properties of Fourier-Bessel transform are studied for functions of $S$-spaces and generalized functions of Jevre ultradisributions type.
[1] Gelfand I.M., Shilov G.E. Spaces of basic and generalized functions. - M.: Fizmatgiz, 1953. - 307 p.
[2] Gorbachuk V.I., Gorbachuk M.L. Boundary value problems for differential-operator equations. - K.: Nauk. Dumka, 1984.- 284 p.
[3] Zhitomirsky V.V. The Cauchy problem for systems of linear partial differential equations with a Bessel differential operator // Mat. sb. - 1955. - V. 36, N 2. - P. 299-310.
[4] Gelfand I.M., Shilov G.E. Fourier transforms of rapidly growing functions and questions of uniqueness of the Cauchy problem // Uspekhi mat. nauk. - 1953. - V. 8, issue 6. - P. 3-54.
[5] Levitan B.I. Expansion in Bessel functions in Fourier series and integrals // Uspekhi mat. sciences. - 1951. - Vol. 6, issue 2. - P. 102-143.
[6] Gorodetsky V.V. Boundary properties of smooth solutions of parabolic type equations in a layer. - Chernivtsi: Ruta, 1998. - 255 p.
- ACS Style
- Drin , S.S.; Drin, I.I. Fourier-Bessel transform of spaces of type $S$ and $S’$. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Drin SS, Drin II. Fourier-Bessel transform of spaces of type $S$ and $S’$. Bukovinian Mathematical Journal. 2018; 1(160).
- Chicago/Turabian Style
- Svitlana Serhiyivna Drin , Iryna Igorivna Drin. 2018. "Fourier-Bessel transform of spaces of type $S$ and $S’$". Bukovinian Mathematical Journal. 1 no. 160.