It is investigated necessary and sufficient conditions on such system $\mathcal{A}$ of subsets of a topological space $X$ that for every function $f: X → \mathbb{R}$ the continuity of all restrictions $f|_A,$ where $A ∈ \mathcal{A}$, on $A$ (or in some point $x_0 ∈ X$) implies the continuity $f$ on $X$ (or in $x_0$).
[1] Young G., Young W. Discontinuous functions continuous with respect to every straight line // Quart. J. Pure Appl. Math. - 1909. - 41. - P.87-99.
[2] Rosenthal A. On the continuiuty of functions of several variables // Math. Z. - 1955. - 63. - S.31-38.
[3] Kantorovich L.V., Akilov G.P. Functional analysis. - M.: Nauka, 1977. - 744 p.
[4] Engelking R. General topology. - M.: Mir, 1986. - 752 p.
[5] Maslyuchenko V.K. Distinctly continuous mappings and Käthe spaces. Dissertation ... Doctor of Physical and Mathematical Sciences. - Chernivtsi, 1999. - 345 p.
- ACS Style
- Evstafievich , O.V.; Mykhaylyuk, V. Continuity of functions with continuous restrictions. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Evstafievich OV, Mykhaylyuk V. Continuity of functions with continuous restrictions. Bukovinian Mathematical Journal. 2018; 1(160).
- Chicago/Turabian Style
- O. V. Evstafievich , Volodymyr Mykhaylyuk. 2018. "Continuity of functions with continuous restrictions". Bukovinian Mathematical Journal. 1 no. 160.