Перейти до основного вмісту
Cauchy problem for higher-order evolutionary equations in $t$ with an infinite-order Bessel operator
Martynyuk Olga 1
1 Department of Algebra and Informatics, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: Cauchy problem, higher-order evolutionary equations, Bessel operator
Abstract

The correct solvability of Cauchy problem is established for one class of evolutionary equations of higher order on $t$ with Bessel operator of infinite order and initial conditions, which are generalized functions of infinite order of ultradistribution.

References

[1] Vladimirov V.S. Equations of mathematical physics. - M.: Nauka, 1988. - 512 p.

[2] Gelfand I.M., Shilov G.E. Some questions of the theory of differential equations. - M.: Fizmatgiz, 1958. - 274 p.

[3] Городецький В.В., Мартинюк О.В., Шевчук Н.М. Оператори Бесселя нескінченного порядку // Крайові задачі для диференціальних рівнянь: 3б. наук. пр. - Чернівці: Прут, 2001. - Вип. 7. - С.61-70.

Cite
ACS Style
Martynyuk, O. Cauchy problem for higher-order evolutionary equations in $t$ with an infinite-order Bessel operator. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Martynyuk O. Cauchy problem for higher-order evolutionary equations in $t$ with an infinite-order Bessel operator. Bukovinian Mathematical Journal. 2018; 1(160).
Chicago/Turabian Style
Olga Martynyuk. 2018. "Cauchy problem for higher-order evolutionary equations in $t$ with an infinite-order Bessel operator". Bukovinian Mathematical Journal. 1 no. 160.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings