The necessary and sufficient conditions of asymptotic stability and sufficient conditions of unboundedness in the mean square is obtained for trivial solution of Ito-Skorokhod equations with infinite aftereffect and Poisson disturbances.
[1] Gikhman I.I., Skorokhod A.V. Theory of random processes. T.3 - M.: Nauka, 1975. - 496 p.
[2] Yasinskaya L.I., Yasinsky V.K. Asymptotic stability in the mean square of the solution of stochastic differential-functional equations / / Ukr. mat. zhurn. - 1980. - 32, N 1. - P.89-98.
[3] Dech G. Guide to the Practical Application of the Laplace Transform and the $z$-Transform. -M.: Nauka, 1969. - 367 p.
[4] Gikhman I.I., Skorokhod A.V. Theory of random processes. V.1. - M.: Nauka, 1972. - 664 p.
[5] Andreeva E.A., Kolmanovsky V.B., Shaikhet L.E. Control of systems with aftereffect. - M.: Nauka, 1992. - 334 p.
[6] Bellman R., Cook K. Differential-difference equations. - M.: Mir, 1967. - 548 p.
[7] Sverdan M.L., Tsarkov S.F., Yasinsky V.K. Stochastic dynamical systems with finite aftereffects. - Chernivtsi: Prut, 2000. - 560 p.
- ACS Style
- Yasinsky, V.K.; Antonyuk , S.V. Behavior of the second moment of solutions of stochastic differential functional equations with Poisson perturbations. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Yasinsky VK, Antonyuk SV. Behavior of the second moment of solutions of stochastic differential functional equations with Poisson perturbations. Bukovinian Mathematical Journal. 2018; 1(160).
- Chicago/Turabian Style
- Volodymyr Kyrylovych Yasinsky, Svitlana Volodymyrivna Antonyuk . 2018. "Behavior of the second moment of solutions of stochastic differential functional equations with Poisson perturbations". Bukovinian Mathematical Journal. 1 no. 160.