We have established the conditions of existence of integrated manifold for multifrequency nonlinear oscillatory systems with pulse influence and got the estimations of the partial derivatives function which determines the integrated manifold.
[1] Samoylenko A.M., Perestok N.A. Differential equations with impulse action. - K.: Vishcha shkola, 1987.- 288 p.
[2] Mitropolsky Yu.A., Samoylenko A.M., Perestok N.A. Averaging method in systems with pulse action / / Ukr. mat. zhurn. - 1985.- 37, N1.- P.56-64.
[3] Samoilenko A.M., Petryshyn R.I. Multi-frequency oscillations of nonlinear systems. - K.: Institute of Mathematics of the National Academy of Sciences of Ukraine, 1998. - 340 p.
[4] Petryshyn R.I., Sopronyuk T.M. Exponential estimate of the fundamental matrix of a linear impulse system. // Ukr. Mat. Journal - 2001.- 53, N8. - P.1101-1109.
[5] Petryshyn R.I., Sopronyuk T.M. Estimates of the error of the averaging method for multi-frequency oscillatory systems. // Nauk. Visnyk Chernivtsi Univ.: 3b. nauk. pr. Mathematics. - Chernivtsi: Ruta, 2002. - P.92-96.
- ACS Style
- Sopronyuk, T. The existence of a discontinuous integral manifold of a multifrequency pulse system. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Sopronyuk T. The existence of a discontinuous integral manifold of a multifrequency pulse system. Bukovinian Mathematical Journal. 2018; 1(150).
- Chicago/Turabian Style
- Tetyana Sopronyuk. 2018. "The existence of a discontinuous integral manifold of a multifrequency pulse system". Bukovinian Mathematical Journal. 1 no. 150.