The random ergodic theorem of type Kakutani theorem is proved. The conception of entropy is introduced for dynamical systems with stationary measure. The theorem, which is analogous to the Abramov-Rohlin theorem on entropy of cross shift, is proved.
[1] Abramov L.M., Rokhlin V.A. Entropy of the skew product of measure-preserving transformations // Bulletin of Leningrad University. - 1962. - 17. - P. 5-13
[2] Furstenberg H. Random walks and discrete subgroups of Lie groups. // Adv. in Probab. Related topics. - Vol. 1 (P. Ney ed.), Dekker, New-York (1971). - P. 1-63.
[3] Barnsley M. Fractals Every where. - New York: Academik Press, 1988.
[4] Kakutani S. Random ergodic Theorems and Markoff processes with a stable distribution // Proc. 2nd Berkeley Symp. Math. Stat. and Prob., 1951. - P. 247-261.
[5] Elton J. An ergodik theorem for iterated maps // Ergod. Theory Dynam. Systems, 1987. - Vol. 7. - P. 481-488.
[6] Grigorchuk R.I. Ergodic theorems for actions of a free group // Proceedings of the Steklov Mathematical Institute. - 2000. - 231. - P. 119-133.
[7] Grigorchuk R.I. Individual ergodic theorem for actions of free groups // Abstracts of reports of the VIII school on the theory of operators in functional spaces. Part 1. - Tambov, 1987. - P. 21.
[8] Nevo A., Stein E.M. A generalization of Birkhoff ergodic theorem // Acta Math. - 1994. -173. - P. 135-154.
[9] Bufetov A.N. Operator ergodic theorems for actions of free semigroups and groups // Functional analysis and applications. - 2000. - 34, N 4. - P. 1-17.
[10] Peterson K. Ergodic theory. - Cambridge University Press, 1983.
[11] Billingsley P. Ergodic Theory and Information. - New York: John Wiley and Sons, 1965.
- ACS Style
- Grigorchuk, R.I. Ergodic theorems and entropy of noncommuting transformations. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Grigorchuk RI. Ergodic theorems and entropy of noncommuting transformations. Bukovinian Mathematical Journal. 2018; 1(150).
- Chicago/Turabian Style
- Rostyslav Ivanovych Grigorchuk. 2018. "Ergodic theorems and entropy of noncommuting transformations". Bukovinian Mathematical Journal. 1 no. 150.