Перейти до основного вмісту
Ergodic theorems and entropy of noncommuting transformations
Grigorchuk Rostyslav Ivanovych 1
1 Texas A&M University, Texas, TX 77840, USA
Keywords: ergodic theorems, entropy
Abstract

The random ergodic theorem of type Kakutani theorem is proved. The conception of entropy is introduced for dynamical systems with stationary measure. The theorem, which is analogous to the Abramov-Rohlin theorem on entropy of cross shift, is proved.

References

[1] Abramov L.M., Rokhlin V.A. Entropy of the skew product of measure-preserving transformations // Bulletin of Leningrad University. - 1962. - 17. - P. 5-13

[2] Furstenberg H. Random walks and discrete subgroups of Lie groups. // Adv. in Probab. Related topics. - Vol. 1 (P. Ney ed.), Dekker, New-York (1971).  - P. 1-63.

[3] Barnsley M. Fractals Every where. - New York: Academik Press, 1988.

[4] Kakutani S. Random ergodic Theorems and Markoff processes with a stable distribution // Proc. 2nd Berkeley Symp. Math. Stat. and Prob., 1951. - P. 247-261.

[5] Elton J. An ergodik theorem for iterated maps // Ergod. Theory Dynam. Systems, 1987. - Vol. 7. - P. 481-488.

[6] Grigorchuk R.I. Ergodic theorems for actions of a free group // Proceedings of the Steklov Mathematical Institute. - 2000. - 231. - P. 119-133.

[7] Grigorchuk R.I. Individual ergodic theorem for actions of free groups // Abstracts of reports of the VIII school on the theory of operators in functional spaces. Part 1. - Tambov, 1987. - P. 21.

[8] Nevo A., Stein E.M. A generalization of Birkhoff ergodic theorem // Acta Math. - 1994. -173. - P. 135-154.

[9] Bufetov A.N. Operator ergodic theorems for actions of free semigroups and groups // Functional analysis and applications. - 2000. - 34, N 4. - P. 1-17.

[10] Peterson K. Ergodic theory. - Cambridge University Press, 1983.

[11] Billingsley P. Ergodic Theory and Information. - New York: John Wiley and Sons, 1965.

Cite
ACS Style
Grigorchuk, R.I. Ergodic theorems and entropy of noncommuting transformations. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Grigorchuk RI. Ergodic theorems and entropy of noncommuting transformations. Bukovinian Mathematical Journal. 2018; 1(150).
Chicago/Turabian Style
Rostyslav Ivanovych Grigorchuk. 2018. "Ergodic theorems and entropy of noncommuting transformations". Bukovinian Mathematical Journal. 1 no. 150.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings