Перейти до основного вмісту
On the localization property of solutions of the Cauchy problem for one class of degenerate equations in spaces of generalized functions
Voznyak Olga Grigorivna 1
1 Department of Economic Cybernetics and Informatics, Ternopil National Economic University, Ternopil, 46009, Ukraine
Keywords: Cauchy problem, degenerate equations, generalized functions
Abstract

The property of the localization of the solutions of the Cauchy problem for degenerate parabolic equations of the Kolmogorov type with 2b→" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">-parabolic part for basic group of variables in spaces of generalized functions is presented.

Cite
ACS Style
Voznyak, O.G. On the localization property of solutions of the Cauchy problem for one class of degenerate equations in spaces of generalized functions. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Voznyak OG. On the localization property of solutions of the Cauchy problem for one class of degenerate equations in spaces of generalized functions. Bukovinian Mathematical Journal. 2018; 1(134).
Chicago/Turabian Style
Olga Grigorivna Voznyak. 2018. "On the localization property of solutions of the Cauchy problem for one class of degenerate equations in spaces of generalized functions". Bukovinian Mathematical Journal. 1 no. 134.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings