On the localization property of solutions of the Cauchy problem for one class of degenerate equations in spaces of generalized functions
1 Department of Economic Cybernetics and Informatics, Ternopil National Economic University, Ternopil, 46009, Ukraine
Keywords:
Cauchy problem, degenerate equations, generalized functions
Abstract
The property of the localization of the solutions of the Cauchy problem for degenerate parabolic equations of the Kolmogorov type with 2b→" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">in spaces of generalized functions is presented. -parabolic part for basic group of variables
Cite
- ACS Style
- Voznyak, O.G. On the localization property of solutions of the Cauchy problem for one class of degenerate equations in spaces of generalized functions. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Voznyak OG. On the localization property of solutions of the Cauchy problem for one class of degenerate equations in spaces of generalized functions. Bukovinian Mathematical Journal. 2018; 1(134).
- Chicago/Turabian Style
- Olga Grigorivna Voznyak. 2018. "On the localization property of solutions of the Cauchy problem for one class of degenerate equations in spaces of generalized functions". Bukovinian Mathematical Journal. 1 no. 134.
Export