Перейти до основного вмісту
Structure and estimates of the fundamental solution of the Cauchy problem for a class of degenerate parabolic equations of Kolmogorov type
Dron’ Vitaly 1 , Ivasyshen Stepan Dmytrovych 2
1 Laboratory of Mathematical Physics, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine, Lviv, 79007, Ukraine
2 Department of Mathematical Physics and Differential Equations, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, 01001, Ukraine
Keywords: the Cauchy problem, degenerate parabolic equations of Kolmogorov type
Abstract

A new modification of the Levi method was used for deepen study of the structure of fundamental solution of the Cauchy problem for a class of degenerate parabolic second-order equations of Kolmogorov type. Estimates of integrals of this fundamental solution were obtained.

References

[1] Kolmogorov A.N. Zufällige Bewegungen (Zur Theorie der Brownschen Bewegung) // Ann. Math. – 1934. – 35. – P.116–117.

[2] Ilyin A.M., Khasminsky R.Z. On the equations of Brownian motion // Probability Theory and its Applications. – 1964. – 9, N3. – P.466-491.

[3] Ivasyshen S.D., Tychynska L.M., Eidelman S.D. Fundamental solutions of the Cauchy problem for one class of second-order ultraparabolic equations // Supplement to the Academy of Sciences of the Ukrainian SSR. Ser.A. – 1990. – No.5. – P.6–8.

[4] Malytska G.P., Fedorov M.P. Construction of a fundamental solution of the Cauchy problem for one class of degenerate parabolic equations // Bulletin of the Precarpathian University. Ser. of Natural and Mathematical Sciences – Ivano-Frankivsk: Play, 1995. – Issue 1. – P.10–16.

[5] Eidelman SD, Ivasyshen SD, Malytska HP. A modified Levi method: development and application // Dop. NAN Ukraine. - 1998. - N5. – J.14–19.

[6] Ivasishen S.D., Androsova L.N. Fundamental solutions of the Cauchy problem for one class of degenerate parabolic equations. – Chernivtsi University – Chernivtsi, 1989. – 62 p. – Dep. in Ukr-NIINTI 16.06.89, N 1762-Uk89.

[7] Dron V.S., Ivasyshen S.D. Properties of fundamental solutions and uniqueness theorems of solutions of the Cauchy problem for one class of ultraparabolic equations // Ukr. mat. zhurn.–1998.–50, N11.–P.1482–1496.

[8] Dron V.S. On correct solvability in weighted Hölder spaces of the Cauchy problem for one class of degenerate parabolic equations of Kolmogorov type // Nauk. visnyk Chernivtsi Univ.: Zb. nauk. pr. Vys. 76. Mathematics.–Chernivtsi: Ruta, 2000.–P.32–41.

[9] Eidelman S.D. Parabolic systems. - M.: Nauka, 1964. - 443 p.

Cite
ACS Style
Dron’, V.; Ivasyshen, S.D. Structure and estimates of the fundamental solution of the Cauchy problem for a class of degenerate parabolic equations of Kolmogorov type. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Dron’ V, Ivasyshen SD. Structure and estimates of the fundamental solution of the Cauchy problem for a class of degenerate parabolic equations of Kolmogorov type. Bukovinian Mathematical Journal. 2018; 1(111).
Chicago/Turabian Style
Vitaly Dron’, Stepan Dmytrovych Ivasyshen. 2018. "Structure and estimates of the fundamental solution of the Cauchy problem for a class of degenerate parabolic equations of Kolmogorov type". Bukovinian Mathematical Journal. 1 no. 111.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings