Перейти до основного вмісту
Point discontinuity of functions of many variables
Maslyuchenko Volodymyr Kyrylovych 1 , Mykhaylyuk Volodymyr 1,2 , Nesterenko Vasyl Volodymyrovych 1
1 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
2 Jan Kokhanowski University, Kielce, 25-001, Poland
Keywords: point discontinuity
Abstract

It is proved theorems on pointwise discontinuity of horizontally quasicontinuous functions which are pointwise discontinuous with respect to the second variable. They improve results of K.Böogel, S.Kempisty, H.Hahn and Y.Mibu and they are connected with the result of G.Debs.

References

[1] Bögel K.Über partiell differenzierbare Funktionen // Math. Z.– 1926. – 25. – S.490–498.

[2] Kempisty S. Sur les functions quasicontinues // Fund. Math.–1932. – 19. – P.184–197.

[3] Hahn H. Reelle Funktionen. 1. Teil. Punktfunktionen.– Leipzig: Academische Verlagsgesellschaft M.B.H., 1932. – 416 S.

[4] Mibu Y. On quasi-continuous mappings defined on product spaces // Proc. Japan Acad. – 1958. – 192. – P.189–192.

[5] Neubrunn T. Quasi-continuity // Real Anal. Exch. – 1988 – 1989. – 14, N3. – P.259–306.

[6] Debs G. Fonctions séparément continues et de première classe sur un espace produit // Math. Scand. – 1986. – 59. – P.122–130.

[7] Piotrowski Z. Miby-type theorems // Classical Analisis. Proc. Intern. Conf. WSI, Random. – 1994. – P.133–139.

[8] Piotrowski Z. On the teorems of Y.Mibu and G.Debs on separate continuity // Internat. G. Math. & Math. Sci. – 1996. – 19, N3. – P.495–500.

[9] Kuratovsky K. Topology. T. 1. – M.: Mir, 1966.–594 p.

[10] Maslyuchenko V.K. Distinctly continuous mappings and Käthe spaces: Diss. ... doctor of physical and mathematical sciences. – Chernivtsi, 1999. – 345 p.

345 с.

[11] Haworth R.C., McCoy R.A. Baire spaces // Dis. Math. – 1977. – 141. – P.1–77.

[12] Breckenridge J.C., Nishiura T. Partial continuity, quasicontinuity and Baire spaces // Bull. Math. Acad. Sinica. – 1976. – 4, N2. – P.191–203.

[13] Hansell G., Troallic J.-P. Quasicontinuity and Namioka theorem // Topology Appl. – 1992. – 46, N 3. – P.135–149.

Cite
ACS Style
Maslyuchenko, V.K.; Mykhaylyuk, V.; Nesterenko, V.V. Point discontinuity of functions of many variables. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Maslyuchenko VK, Mykhaylyuk V, Nesterenko VV. Point discontinuity of functions of many variables. Bukovinian Mathematical Journal. 2018; 1(111).
Chicago/Turabian Style
Volodymyr Kyrylovych Maslyuchenko, Volodymyr Mykhaylyuk, Vasyl Volodymyrovych Nesterenko. 2018. "Point discontinuity of functions of many variables". Bukovinian Mathematical Journal. 1 no. 111.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings