A theorem of Scorza Dragoni type has been proved for multivalued functions $F: T × X → Y$, when $X$ is a direct limit of sequanse of its second countable subspaces and $T$ is a Hausdorff locally compact space.
[1] Scorza Dragoni G. Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un'altra variable // Rend. Sem. Mat. Univ. Padova. – 1948. – 11. – P.102–106.
[2] Brunovsky P. Scorza-Dragoni's theorem for unbounded set-valued functions and its applications to control problems // Matematicky Casopis. – 1970. – 20, 3. – P.205–213.
[3] Bonanno G. Two theorems on the Scorza Dragoni property for multifunctions // Atti Acc. Lincei Rend.fis. – 1989. – 83, 8. – P.51–56.
[4] Kucia A. Scorza Dragoni type theorems // Fund. Math. – 1991. – 138.– P.197–203.
[5] Averna D. Lusin type theorems for multifunctions, Scorza Dragoni's property and Caratheodory selections // Bolletino U.M.I. – 1994. – 7, 8-A. – P.193–202.
[6] Gaidukevich O.I., Maslyuchenko V.K., Mykhailiuk V.V. Straight boundaries and the Skorz-Dragoni property // Supplement to NAS of Ukraine. – 2001. – No. 5. – P.10–13.
[7] Sainte-Beuve M.-F. On the extension of von Neumann-Aumann's theorem // J. Funct. Anal. – 1974. – 17. – P.112–129.
- ACS Style
- Gaidukevich , O.I. One theorem of the Ckortz-Dragoni type for multivalued mappings. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Gaidukevich OI. One theorem of the Ckortz-Dragoni type for multivalued mappings. Bukovinian Mathematical Journal. 2018; 1(111).
- Chicago/Turabian Style
- Oksana Ivanivna Gaidukevich . 2018. "One theorem of the Ckortz-Dragoni type for multivalued mappings". Bukovinian Mathematical Journal. 1 no. 111.