It is proved a new generalization of the Namioka theorem. In particular, it implies the following result. Let $X_1, ..., X_d$ be strongly countable complete spaces, $Y$ be a metrizable space and $γ: \prod_{i=1}^{d-1} X_i → X_d$ be compactvalued upper quasicontinuous mapping. Then for any separately continuous function $f = \prod_{i=1}^d X_i → Y$ there exists dense $G_δ$ -subset $A ⊆ \prod_{i=1}^{d-1} X_i$ such that f is continuous in every point of $\{x\} × γ(x)$ for any $x ∈ A$. Besides, it is obtained some new results on automatically continuity of group operations and actions.
[1] Christensen J.P.R Joint continuity of separately cоntinuous functions // Proc. Amer. Math. Soc. – 1981. – 82, N3. – P. 455-461.
[2] Saint-Raymond J. Jeux topologiques et espaces de Namioka // Proc. Amer. Math. Soc. – 1984. – 87, N4. – P.409–504.
[3] Talagrand M. Espaces de Baire et espaces de Namioka //Math. Ann. – 1985. – 270, N2. – P.159–164.
[4] Debs G. Poins de continue d'une fonction separament continue // Proc. Amer. Math. Soc. – 1986. – 97. – P.167–176.
[5] Namioka I. Separate continuity and joint continuity // Pacif. J. Math. – 1974. – 51, N2. – P.515–531.
[6] Baire.R. Sur les fonctions de variables reelles. // Annali. di mat. ed. appl., ser.3. – 1899. – 3. – P.1–123.
[7] Maslyuchenko V.K., Nesterenko V.V. On the continuity of differently continuous mappings on curves // Mat. Studii.–1998. – 9, No. 2. – P.205–210.
[8] Böogel K. Uber partiell defferenzierbare Funktionen // Math. Z. – 1926. – 25. – S.490–498.
[9] Calbrix J., Troallic J.-P. Applications separament continues // C. R. Acad. Sc. Paris. Serie A. – 1979. – 288. – P.647–648.
[10] Hansel G., Troallic J.-P. Quasicontinuity and Namioka's theorem // Topology Appl. – 1992. – 46, N2. – P.135–149.
[11] Arkhangelsky A.V. Topological spaces of functions. – M.: Izd-vo Mosk. there, 1989. – 222 p.
[12] Reznichenko O.V. Generalization of the Ellis theorem // Topology Appl. – 1991. – 31, N6. – P.111–133.
[13] Engelking R. General topology. – M.: Mir, 1986. – 752 p.
[14] McCoy R., Ntantu I. Topological property of spaces of continuous function // Lect. Notes Math. – 1988. – 1315. – P.1–124.
- ACS Style
- Maslyuchenko, O.V. Cumulative continuity of distinctly continuous functions on graphs of multivalued mappings. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Maslyuchenko OV. Cumulative continuity of distinctly continuous functions on graphs of multivalued mappings. Bukovinian Mathematical Journal. 2018; 1(111).
- Chicago/Turabian Style
- Oleksandr Volodymyrovych Maslyuchenko. 2018. "Cumulative continuity of distinctly continuous functions on graphs of multivalued mappings". Bukovinian Mathematical Journal. 1 no. 111.