The class of solutions of non-local parabolic problem with homogeneous normal boundary conditions is characterized. These solutions are represented in the form of Poisson integrals of elements from $L_p$-spaces and finite generalized Borel measures.
[1] Roytberg Ya.A., Sheftel Z.G. Green's formula and solvability conditions for nonlocal elliptic boundary value problems // Ukr. Mat. Zh. – 1973. – 25, No. 4. – P.475–487.
[2] Zhitarashu N.V., Eidelman S.D. On a nonlocal parabolic boundary value problem // Mat. issledovaniya. – Kishinev, 1970.–5, N3. – P.83–100.
[3] Zhitarashu N.V., Eidelman S.D. Parabolic boundary value problems. – Kishinev: Shtiintsa, 1992. – 328 p.
[4] Zhitarashu N.V., Eidelman S.D. $L_p$-theory of a class of nonlocal parabolic boundary value problems // Dokl. RAS.–1997.–356, N4. – P.445–448.
[5] Dubrovskaya A.P. On the Green's functions of a nonlocal parabolic boundary value problem satisfying the normality condition // Proc. Research Institute of Mathematics of Voronezh University.–1975. – Issue 19. – P.66–75.
[6] Kondur O.S. Normal parabolic boundary value problems for systems with discontinuous coefficients // Supplement to the Academy of Sciences of Ukraine. – 1994. – No. 12. – P.18–22.
[7] Eidelman S.D. Parabolic systems. – M.: Nauka, 1964. – 443 p.
[8] Ivasishen S.D. Green's matrices of parabolic boundary value problems. – K.: Vyshcha shk., 1990. – 200 p.
[9] Ivasishen S.D. Integral representation and initial values of solutions of $\vec{2b}$-parabolic systems // Ukr. mat. zhurn. – 1990. – 42, N4. – P.500–506.
- ACS Style
- Kondur , O.S. Characterization of one class of solutions of a normal nonlocal parabolic boundary value problem. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Kondur OS. Characterization of one class of solutions of a normal nonlocal parabolic boundary value problem. Bukovinian Mathematical Journal. 2018; 1(111).
- Chicago/Turabian Style
- O. S. Kondur . 2018. "Characterization of one class of solutions of a normal nonlocal parabolic boundary value problem". Bukovinian Mathematical Journal. 1 no. 111.