In connection with Baire classification of separately continuous mappings and its analogs it is introduced the corresponding notion of Lebesgue space. It is proved that topological vector space which is union of increasing sequence of metrizable subspaces and $σ$-metrizable paracompactum are Lebesque spaces.
[1] Rudin W. Lebesgue first theorem // Math. Analysis and applications, Part B. Edited by L.Nachbin. Adv. in Math. supplem. studies 7B. Academic Press. – 1981. – P.741–747.
[2] Maslyuchenko V.K., Sobchuk O.V. Beriev's classification and $σ$-metrization spaces // Mat. studii. – 1993. – Issue 3. – P.95–102.
[3] Mykhailiuk V.V., Sobchuk O.V. Beriev's classification of vector-valued mappings for the space of finite sequences // Nauk. visnyk Chernivtsi un-tu: Zb. nauk. pr. Issue 76. Mathematics. – Chernivtsi: Ruta, 2000. – P.80–81.
[4] Engelking R. General topology. – M.: Mir, 1986. – 751 p.
[5] Schaefer H. Topological vector spaces. – M.: Mir, 1971. – 360 p.
- ACS Style
- Sobchuk, O.V. Baire classification and Lebesgue spaces. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Sobchuk OV. Baire classification and Lebesgue spaces. Bukovinian Mathematical Journal. 2018; 1(111).
- Chicago/Turabian Style
- Oleksandr Vasyliovych Sobchuk. 2018. "Baire classification and Lebesgue spaces". Bukovinian Mathematical Journal. 1 no. 111.