Перейти до основного вмісту
Baire classification and Lebesgue spaces
Sobchuk Oleksandr Vasyliovych 1
1 Professional College of Yuriy Fedkovych Chernivtsi National University, Chernivtsi , 58000, Ukraine
Keywords: Baire classification, Lebesgue spaces
Abstract

In connection with Baire classification of separately continuous mappings and its analogs it is introduced the corresponding notion of Lebesgue space. It is proved that topological vector space which is union of increasing sequence of metrizable subspaces and $σ$-metrizable paracompactum are Lebesque spaces.

References

[1] Rudin W. Lebesgue first theorem // Math. Analysis and applications, Part B. Edited by L.Nachbin. Adv. in Math. supplem. studies 7B. Academic Press. – 1981. – P.741–747.

[2] Maslyuchenko V.K., Sobchuk O.V. Beriev's classification and $σ$-metrization spaces // Mat. studii. – 1993. – Issue 3. – P.95–102.

[3] Mykhailiuk V.V., Sobchuk O.V. Beriev's classification of vector-valued mappings for the space of finite sequences // Nauk. visnyk Chernivtsi un-tu: Zb. nauk. pr. Issue 76. Mathematics. – Chernivtsi: Ruta, 2000. – P.80–81.

[4] Engelking R. General topology. – M.: Mir, 1986. – 751 p.

[5] Schaefer H. Topological vector spaces. – M.: Mir, 1971. – 360 p.

Cite
ACS Style
Sobchuk, O.V. Baire classification and Lebesgue spaces. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Sobchuk OV. Baire classification and Lebesgue spaces. Bukovinian Mathematical Journal. 2018; 1(111).
Chicago/Turabian Style
Oleksandr Vasyliovych Sobchuk. 2018. "Baire classification and Lebesgue spaces". Bukovinian Mathematical Journal. 1 no. 111.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings